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Abstract 
Motivation: 5-Methylcytosine and 5-Hydroxymethylcytosine in DNA are major epigenetic 
modifications known to significantly alter mammalian gene expression. High-throughput assays to 
detect these modifications are expensive, labor-intensive, unfeasible in some contexts, and leave a 
portion of the genome unqueried. Hence, we devised a novel, supervised, integrative learning 
framework to perform whole-genome methylation and hydroxymethylation predictions in CpG 
dinucleotides. Our framework can also perform imputation of missing or low quality data in existing 
sequencing datasets. Additionally, we developed infrastructure to perform in silico, high-throughput 
hypotheses testing on such predicted methylation or hydroxymethylation maps. 
Results: We test our approach on H1 human embryonic stem cells and H1-derived neural progenitor 
cells. Our predictive model is comparable in accuracy to other state-of-the-art DNA methylation 
prediction algorithms. We are the first to predict hydroxymethylation in silico with high whole-genome 
accuracy, paving the way for large-scale reconstruction of hydroxymethylation maps in mammalian 
model systems. We designed a novel, beam-search driven feature selection algorithm to identify the 
most discriminative predictor variables, and developed a platform for performing integrative analysis 
and reconstruction of the epigenome. Our toolkit DIRECTION provides predictions at single 
nucleotide resolution and identifies relevant features based on resource availability. This offers 
enhanced biological interpretability of results potentially leading to a better understanding of 
epigenetic gene regulation. 
Availability:	http://www.utdallas.edu/~prr105020/direction, under CC-by-SA license.	
Contact:	pradiptaray@utdallas.edu, mchen@utdallas.edu, michael.zhang@utdallas.edu 
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 
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1 Introduction  
Transcriptional regulation is a complex, dynamic process established by 
regulatory pathways encompassing a variety of genetic and epigenetic 
mechanisms. 5-Methylcytosine (5-mC) and 5-Hydroxymethylcytosine 
(5-hmC) are major modifications to the cytosine base in the DNA, 
known to be correlated with gene expression (Hackett,J.A., et al. 2013, 
Jones,P.A. 2012). The addition of a methyl group to cytosine creates the 
epigenetic modification 5-mC- the most prevalent form of DNA 
methylation in mammals. 5-hmC is an oxidative derivative of 5-mC 
generated in a Ten-Eleven Translocation (TET) oxidase family mediated 
reaction (Yu,M., et al. 2012). The role of 5-mC in transcriptional 
regulation is well understood, while the function of 5-hmC remains 
under investigation. 5-hmC is the intermediate step leading to 
demethylation of the cytosine (Hackett,J.A., et al. 2013), known to 
closely associate with enhancers (Yu,M., et al. 2012), exon-intron 
boundaries (Khare,T., et al. 2012), elevated C-to-G transversion rates 
(Supek,F., et al. 2014), labile nucleosomes and CTCF binding 
(Teif,V.B., et al. 2014). Previous studies in mammalian systems have 
shown 5-hmC abundance across tissues to vary significantly, with neural 
tissue being 5-hmC enriched (Kim,M., et al. 2014), and certain cancer 
tissues being 5-hmC depleted (Yang,H., et al. 2013), suggesting a 
functional role of 5-hmC. The most accurate and comprehensive 
technique (Qu,J., et al. 2013) for genome-wide methylation 
quantification is whole-genome sodium bisulfite treatment of DNA 
(Frommer,M., et al. 1992) causing methylated cytosines to remain intact 
whilst unmethylated cytosines are deaminated to uracils (C-to-U 
conversion), followed by Polymerase Chain Reaction (PCR) 
amplification and shotgun sequencing. Whole-genome shotgun Bisulfite-
sequencing (BS-seq) involves all PCR fragments genome-wide, while 
the Reduced Representation Bisulfite-sequencing (RRBS-seq) protocol 
leads to a small fraction of the fragments being selected (Gu,H., et al. 
2011). BS-seq experiments allow us to estimate a C-to-U conversion rate 
(CCR) or methylation level for each cytosine in the genome- an 
estimator of the degree of methylation. However, BS-seq does not 
differentiate between 5-mC and 5-hmC, hence the estimated methylation 
level is due to both 5-mC and 5-hmC. In order to quantify the degree of 
hydroxymethylation, alternate protocols like TET-Assisted BS-seq 
(TAB-seq) (Yu,M., et al. 2012) and Oxidative BS-seq (oxBS-seq)  
(Booth,M.J., et al. 2012) were developed. In this paper, we refer to 
detectable modifications from BS-seq experiments (yielding a 
summation of 5-mC and 5-hmC driven CCRs) as methylation, and 
genome-wide characterization of methylation as the methylome. We 
refer to detectable modifications from TAB-seq (yielding solely 5-hmC 
driven CCRs or 5-hmC levels) as hydroxymethylation, and 
corresponding genome-wide maps as the hydroxymethylome. 
Importance of predicting methylation and hydroxymethylation: Our 
prediction framework, which can perform whole genome methylome or 
hydroxymethylome reconstruction as well as imputation of missing data 
in existing datasets, is important for several reasons. Despite the 
availability of high-throughput assays for querying DNA 
hydroxymethylation, there only exists a handful of publicly available 
TAB-seq or oxBS-seq datasets, and performing whole-genome BS-seq, 
oxBS-seq or TAB-seq requires significant expenditure and skilled labor. 
Sequencing (or hybridization) based assays are also invasive and 
destructive procedures that may be unfeasible in certain experimental 
setups. It is also impossible to set up high-throughput assays for all cell 
or tissue types and every developmental stage, physiological condition or 
perturbation, necessitating in silico prediction. In such situations,  

reconstruction of the whole epigenome predicated upon available data 
for correlated traits and a predictive model trained on a similar cell type 
is a practical, economical and efficient way to query methylation or 
hydroxymethylation. Additionally, DNA sequencing based protocols 
have amplification and fragment selection steps, effectively creating a 
biased sampling procedure that may cause a fraction of cytosines in the 
genome to be unrepresented or underrepresented in the survey. This is 
especially evident for protocols like RRBS-seq where only a small 
fraction of cytosines have reliable coverage for querying methylation 
(Gu,H., et al. 2011). Our method can be used to predict such missing or 
low-quality data in imputation mode. Finally, inherent stochasticity of 
the sampling process makes it inevitable that some estimations of 
methylation levels using high coverage sequencing data can be 
potentially erroneous. However, in silico predictive models, trained 
using high-quality data with multiple input predictor variables, would be 
able to robustly predict DNA methylation.  
We have devised a machine learning based integrative framework for 
high-accuracy, single-nucleotide resolution predictions of DNA 
methylation (either 5-mC or 5-hmC) and solely 5-hmC modifications in 
mammalian model system genomes. Our publicly available tool 
DIRECTION (Discriminative IntegRative whole Epigenome 
Classification at single nucleotide resoluTION) can be trained on 
shotgun sequencing-based mammalian methylation and 
hydroxymethylation datasets, by identifying and using available, 
correlated, high-throughput assays and genomic sequence-based traits as 
predictor variables. DIRECTION can be downloaded from 
http://www.utdallas.edu/~prr105020/direction 
Context in literature: Over the past decade, high-throughput assays and 
corresponding computational models have been actively pursued to 
annotate and predict the epigenome (Ernst,J. and Kellis,M. 2012, Ernst,J. 
and Kellis,M. 2015), including several approaches for predicting 
methylation as either a binary or continuous variable in CpG 
dinucleotides. Early models for DNA methylation prediction were based 
on Support Vector Machines (SVMs) and decision trees, which 
employed sequence and structure derived information (Bhasin,M., et al. 
2005, Bock,C., et al. 2006, Das,R., et al. 2006) to classify genes, CpG 
islands (CGI) or DNA fragments into hypermethylated versus 
hypomethylated classes. However, sequence-based prediction of 
methylation is limited in its ability to identify cell type, tissue, or 
condition-specific methylation patterns across datasets as underlying 
sequence features remain unchanged. Since such methylation patterns 
are of specific interest to biologists, several studies analyzed correlation 
between methylation and various assays profiling transcription factor 
(TF) binding or chromatin landscape (Wrzodek,C., et al. 2012). Such 
knowledge has been leveraged to build explicit predictive models of 
DNA methylation based on histone modification, nucleosome 
positioning, chromatin accessibility and TF binding data, including 
several at single nucleotide or dinucleotide resolution.  (Whitaker,J.W., 
et al. 2015) uses discriminative sequence motifs for individual datasets to 
predict CpG methylation.  (Ma,B., et al. 2014) uses support vector 
regression to predict methylation as a continuous-valued response 
variable in CpG sites across tissues, and (Zhang,W., et al. 2015) use 
Random Forests (RFs) on genome, epigenome and ChIP-seq derived 
traits and neighboring CpG methylation levels for imputing methylation 
arrays.  (Yan,H., et al. 2015) used RFs on sequence and epigenome-
derived features training on BS-seq data, while (Wang,Y., et al. 2016) 
use SVMs and deep neural nets on topological domains and other 
features by training on RRBS-seq data.  (Fan,S., et al. 2016) predict stem 
cell CpG methylation for methylation arrays and BS-seq data (Supp  
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Table T1 for a comprehensive survey updated from (Zhang,W., et al. 
2015)).  
Uniqueness of approach: Firstly, DIRECTION is able to deconfound 
effects of 5-mC and 5-hmC modifications, as it can be separately trained 
on BS-seq and TAB-seq datasets for a given cell-type. This is the first 
time 5-hmC modifications have been predicted in silico (with a whole-
genome accuracy of 0.82), allowing us to systematically reconstruct 5-
hmC modification maps in different cell-types and tissues. Secondly, 
DIRECTION provides different usage modes (Supp Table T2) including 
imputation and whole methylome reconstruction (based on training a 
model in a related cell or tissue type). This is possible because we do not 
use predictor variables likely to be relevant only in specific cell-types 
(like DNA-binding motifs of cell-type restricted TFs), enabling transfer 
learning. Thirdly, DIRECTION is able to heuristically identify an 
optimal feature set (OFS) for predictions based on the set of available 
predictor variables (optionally using regional methylation patterns and 
methylation information from other cell types), allowing use in resource-
poor scenarios and providing biologically interpretable results. Also, 
DIRECTION predicts 5-hmC modification at single nucleotide 
resolution (as opposed to CpG dinucleotide), since CpG dinucleotides 
may be asymmetrically modified for 5-hmC (Yu,M., et al. 2012). Single 
nucleotide resolution allows us to collate predictions to any biologically 
relevant resolution (CpG dinucleotide, CGI, gene) for purposes of 
downstream functional analysis. We provide a novel framework for 
predicting the whole methylome, based on a decision tree topology (Fig 
1) with different classifiers corresponding to each leaf. This tree 
partitions the methylome by selecting the most appropriate classifier 
given the availability of predictor variables and their efficacy on the 
basis of biologically relevant methylation paradigms. Additionally, we 
identified CpG sites with invariant methylation by contrasting available 
reference methylomes, as an optional feature for methylation prediction.  

2 Methods 
Bisulfite treatment protocols followed by short-read sequencing (BS-seq 
or TAB-seq) provide CCRs at single nucleotide resolution for cytosines 

ranging from 0 (unmethylated) to 1 (fully methylated). We formulate 
prediction of DNA methylation as a binary classification problem due to 
the bimodal nature of the distribution of CCRs in BS-seq experiments. 
Genome-wide empirical distributions of CCRs in mammalian reference 
methylomes (Kundaje,A., et al. 2015) from inbred cell lines and sourced 
whole tissue (with low and high cellular heterogeneity respectively) 
show clear evidence of a bimodal distribution of CCRs (Supp Fig 1A). 
This suggests that with respect to DNA methylation, cell-to-cell variation 
or within-cell heterogeneity across alleles at individual CpG sites are not 
prominent in mammalian cells and tissues.  
5-hmC is an intermediate molecular state in the demethylation pathway, 
and TAB-seq CCRs tend to be significantly lower than BS-seq CCRs. 
Previous studies have shown that the vast majority of CpG sites are 
lowly hydroxymethylated and have a CCR of zero (Yu,M., et al. 2012) 
and identified that significantly hydroxymethylated sites exhibit a 
unimodal distribution of CCRs peaking at 0.18 (Supp Fig 1C). We thus 
also model 5-hmC prediction as a binary classification problem. 5-hmC 
has been shown to be a temporally stable (rather than transient) 
modification (Bachman,M., et al. 2014), which is validated by 
concordance of TAB-seq levels across biological replicates of NPC 
(Supp Fig 1D), and our BS-seq and TAB-seq datasets show good 
consistency between experiments. These evidences lend weight to the 
tractability of predicting 5-hmC modifications. Thus, we aim to learn a 
function that will map a set of input features {x1, x2, … xn} to binary 
class labels {low, high} for the purpose of reconstructing a discretized 
approximation of the BS-seq and TAB-seq CCRs at individual cytosines. 
The binary approximations of the BS-seq and TAB-seq CCRs are 
referred to as methylation and 5-hmC status respectively (Supp Text S1 
for labeling classes, Supp Text S2 for feasibility of 5-hmC prediction). 
Overall architecture: DIRECTION offers three primary modes of 
usage: for existing datasets, we can identify an OFS for predicting 
methylation and 5-hmC status based on available input feature sets, or 
impute low quality or missing data. Additionally, the toolkit allows us to 
perform whole methylome and hydroxymethylome reconstruction based 
on a user-provided feature set and SVM or RF model trained on a similar 
cell type or tissue. For other modes see Supp Table T2.  

 
Fig. 1: DNA methylation reconstruction framework A) Decision Tree for partitioning methylome based on different prediction paradigms B) Schema of 
prediction framework outlining beam search (feature selection), training, testing, and cross-validation modes C) Beam search algorithm feature set 
exploration shown for beam width = 2, for two levels of the search tree 
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Machine learning based approaches, most prominently SVM and RF 
models have been successfully used to predict methylation in the past 
(Das,R., et al. 2006, Zhang,W., et al. 2015). Since we aim to perform  
genome-wide prediction, we chose not to use a single predictive model, 
but instead designed a scalable ensemble-learning framework that would 
be able to deconvolve multiple methylation paradigms that are at work in 
different regions of the genome. For this purpose, a decision tree with a 
biologically motivated topology is used (Fig 1A), which partitions the 
methylome for methylation status prediction, based on available 
predictor variables and methylation paradigms. At each partition, we 
train separate predictive models predicated upon an SVM and RF, which 
exhibit comparable predictive accuracy. We also identified CpG sites 
with invariant methylation status across a set of high-quality reference 
methylomes, which can optionally be used as an additional feature to 
predict methylation status. With research on 5-hmC functionality 
currently underway, and due to a lack of reference hydroxymethylomes, 
we used a single predictive model (SVM or RF) to perform 5-hmC status 
prediction. 
Model-based classification: SVMs typically seek to maximize the 
distance of training instances from the decision boundary in input space, 
using a kernel transformation to separate features in high dimensional 
space. We chose to use the popular Radial Basis Function (RBF) 
(Bishop,C. 2007), previously used to predict DNA methylation status 
(Das,R., et al. 2006). RF is an ensemble-learning algorithm comprised of 
numerous decision trees, well known for high classification performance 
and resistance to overfitting. It averages predictions and feature weights 
across multiple decision trees and randomly samples subsets of features, 
subsequently separating class labels by splitting input features to 
optimize Gini Impurity or entropy (Breiman,L. 2001). SVMs and RFs 
were trained on balanced sets of both classes, and tested on both 
balanced sets (5-fold cross-validation) and on the whole genome (Supp 
Text S3). We include both models in our framework since they have 

differing strengths (eg. SVMs work well even with small training sets, 
RFs are naturally resistant to outliers), letting the user choose the model 
depending on the dataset, and they work with comparable efficiency for 
our data. 
Evaluation of classification quality: For evaluating predictions on 
balanced sets, we used Precision and Recall, F-score, and Area Under 
Curve (AUC). True Positive and True Negative Rates were used to 
evaluate whole genome predictions (Supp Text S4). Training and test set 
sizes were decided based on evaluation metric stability (Supp Figs 2A, 
2B). 
Beam search algorithm: All input features (listed in Supp Table T3) 
were first preprocessed for use in our predictive framework (Supp Text 
S5). Identifying OFSs for classification is computationally intractable for 
a large number of input features (Koller,D. and Sahami,M. 1996), due to 
the curse of dimensionality. The problem is additionally complicated by 
the presence of noise in input features, label infidelity in the response 
variable, missing or low quality data for certain features, and high inter-
feature correlation. While OFS selection and model training can be 
jointly performed (Nguyen,M.H. and De la Torre,F. 2010), we 
heuristically identified an OFS using a recursive feature elimination 
strategy not limited to a specific learning algorithm, providing flexibility 
to choose a predictive model. Recursive feature elimination allows us to 
pick feature sets with fewer features that fit the data better in an iterative 
fashion, implicitly enforcing sparsity. We performed an initial feature 
elimination step based on inter-feature correlational redundancies (Supp 
Text S6, and S7 for recursive and initial feature elimination, 
respectively). 
We then conducted recursive feature elimination on the remaining 
features by implementing the beam search algorithm (schema: Fig 1B): a 
classical artificial intelligence search procedure, utilizing heuristic 
pruning rules to explore a graph with nodes corresponding to all possible 
feature sets (Zhang,W. 1998). Nodes (feature sets) are sorted in a queue 

 
Fig. 2: DNA Methylation status prediction A) CGI and non-CGI SVM model predictions for GF (Genomic Features), CH (Chromatin Features), HR 
(Highest Recall Features), HP (Highest Precision Features), OFS (Highest F-Score Features), OFS+N (OFS+nearest neighbor), OFS+N+C 
(OFS+N+consensus reference methylome) B) Feature sets for predicting NPC methylation status C) Whole-genome methylation status prediction 
performance in NPC D) Comparison of DIRECTION and classification tree for NPC methylation E) An example path traversed by beam search 
through Precision-Recall space, while optimizing F-score (in brackets) for H1 non-CGI SVM model [A and D: Supp Table T5, E: Supp Table T8] 
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according to classification evaluation metrics evaluated by 5-fold cross-
validation, and the queued node having the highest metric is explored 
further by the algorithm until all nodes are evaluated or a maximum 
number of iterations are reached while simultaneously recoding the 
feature set with the optimum metric (e.g. Fig 2E). The beam width 
parameter controls the number of nodes subject to further exploration 
and subsequent evaluation (Fig 1C). Across different beam width values, 
we find that beam search exhibits stability since it generates similar 
results (Supp Table T4). The algorithm for identifying optimal feature 
sets is shown as pseudocode and a flowchart (Supp Text S6 and Supp 
Fig 3D). While OFSs can be optimized for multiple classification 
evaluation metrics in our framework, in this paper “OFS” typically refers 
to the feature set corresponding to highest F-score metric, unless 
otherwise mentioned explicitly. Finally, we examined contributions of 
individual features to the predictive ability of the OFS (Supp Text S8).  
Exploiting correlation within datasets: Binding of DNMT1 to DNA 
results in a 6000bp long random walk of an enzyme and subsequent 
methylation of 50 CpG sites on average, resulting in spatially contiguous 
stretches of 5-mC modified CpG sites seldom interrupted by lowly 
methylated CpGs. We engineered several predictor variables based on 
methylation status of neighboring CpG sites, previously used to impute 
methylation data (Zhang,W., et al. 2015). Cytosines in CpG sites were 
divided into “high-coverage” and “low-coverage” sets (sequencing depth 
at CpG site in the dataset was ≥ or < 5) in NPC. To predict methylation 
status at each low-coverage cytosine, we compared predictive abilities of 
the methylation status of the three nearest high-coverage CpG sites to the 
CpG in question. We additionally contrasted another predictor 
constructed by using the most common methylation status (preforming a 
majority vote) across the three nearest high-coverage sites. We find that 
the precision of prediction drops from the nearest to furthest neighbor, 
and methylation status of the nearest neighbor’s predictive performance 
is comparable to the majority methylation status of the three nearest 
neighbors (Supp Fig 3A). We analyzed the predictive quality of the 
nearest neighbor based on distance between the predicted CpG site and 
the nearest neighbor. As distance increases from contiguous up to 
2500bp, both precision and recall decrease (Fig 3C), with a significant 
drop after 500bp. Thus, methylation status of the nearest neighboring 

high-coverage CpG site within 500bp was used as a discriminative 
predictor variable. Since a large fraction of CpG sites have a high 
coverage neighbor within 500bp even for moderately sized BS-seq 
datasets (Fig 3D), this feature was added to the beam search-identified 
OFS and the model was retrained for imputation (Supp Text S9).  
Identifying invariance in methylation across datasets: The underlying 
sequence composition of a genomic region has been documented to 
shape DNA methylation patterns locally (Yu,M., et al. 2012). Accurate 
methylome predictions using sequence composition-derived features 
(Whitaker,J.W., et al. 2015) suggest that a proportion of CpG sites have 
invariant methylation status across cell or tissue types and conditions. 
We identify such CpG sites and optionally use their methylation as an 
additional feature for performing whole methylome reconstruction or 
imputation in other datasets (Fig 1A). Based on 25 high-quality reference 
human methylomes from the NIH Roadmap Epigenome consortium 
(Kundaje,A., et al. 2015), we identified the majority methylation status 
for each CpG site with reliable sequencing depth across the 25 datasets. 
We refer to the set of cytosines and their corresponding majority 
methylation status as the consensus reference methylome. We 
systematically decrease the set of cytosines by additionally constraining 
that no more than 8, 4, or none out of the 25 reference methylomes could 
be different from the methylation status of the majority of the 
methylomes, referring to these variations as “consensus reference 
methylome with disagreement threshold n.” While determining 
methylation status in NPC using such consensus-based predictors, we 
identified a trade-off between accuracy and applicability. As we increase 
stringency of the disagreement criterion from 12 to 0, the prediction 
accuracy improves from 0.85 to 0.99 (on balanced test sets) (Fig 3A), 
while the fraction of CpG sites in the genome that can be used to perform 
this prediction drops from 75% to 44% (Fig 3B). Given high predictive 
ability of the consensus reference methylome with zero disagreement, we 
optionally use this dictionary driven approach as a predictor to 
reconstruct a portion of the methylome. Depending on the reconstructed 
methylome, the consensus reference methylome can be created using a 
different set of relevant reference methylomes, and can potentially 
provide insight into aberrant CpG methylation in perturbation or disease 
studies known to affect methylation (Supp Text S10). 

 
 

Fig. 3: DNA methylation predictions harnessing intra- and inter-methylome similarities A) Balanced sets predictions on methylation-invariant CpG sites 
using consensus reference methylome and SVM (Supp Table T5) B) Consensus Reference Methylome size as fraction of total methylome for 
disagreement thresholds 0, 4, 8, 12 (Supp Table T9(A)) C) Precision/Recall for methylation status imputation using methylation status of nearest 
neighboring CpG site as function of distance to nearest neighbor (Supp Table T5) D) Cumulative Distribution Function of the fraction of low coverage 
CpG sites w.r.t. distance to the nearest high coverage site in a typical high-coverage and low-coverage BS-seq dataset (NPC and fetal small intestine 
respectively) 
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3 Results 
BS-seq and TAB-seq datasets from the NIH Roadmap Epigenome 
consortium (Kundaje,A., et al. 2015) were used for training and testing 
our predictive model. Read counts for estimating CCRs in H1 human  
embryonic stem cell (ESC) line and H1-derived NPC neural progenitor 
BS-seq datasets (GEO GSE16256) were obtained from the uniformly 
processed data published by the Roadmap Epigenome consortium 
(Kundaje,A., et al. 2015), while the BISMARK tool (Krueger,F. and 
Andrews,S.R. 2011) was used for mapping and obtaining the CCRs for 
H1 (GEO GSE36173) and NPC (GEO GSM882245, GSM1463129) 
TAB-seq datasets (Supp Text S11). These cell types were chosen due to 
availability of BS-seq and TAB-seq data, and since previous studies 
performing functional enrichment and analysis of 5-hmC in human and 
mouse ESCs (Stroud,H., et al. 2011, Wu,H., et al. 2011, Yu,M., et al. 
2012, Zhang,W., et al. 2016) and neural progenitors (Song,C., et al. 
2011, Tan,L., et al. 2013, Wang,T., et al. 2012), especially in neural 
development. 
DNA methylation prediction: Since there is no precedent for in silico 
prediction of the 5-hmC modification, we first built a framework for 
conventional two-state classification of DNA methylation in CpG sites, 
supervised using BS-seq data. Since distributions and spatial contiguity 
patterns of highly and lowly methylated CpG sites vary between CGI 

and non-CGI regions, we trained two classifiers with separately inferred 
OFSs (Fig 1A, Model 1, Model 2). Significant differences in prediction 
quality were observed among different feature sets (agreeing with 
previous studies (Das,R., et al. 2006, Zhang,W., et al. 2015)) suggesting 
the importance of feature set selection. We performed optimal feature 
selection using our beam search algorithm, and identified feature sets 
with the best precision, recall, and harmonic mean of the two (F-score) 
for training and testing balanced sets of both classes in H1 and NPC with 
minor performance differences (H1: Supp Figs 2E, 2F, NPC: Fig 2A). 
Whole genome predictions (Fig 2C) were carried out subsequently (Supp 
Tables T5, T6 for results). The whole genome predictions were also used 
to assess the performance of DIRECTION across varying values of BS-
seq CCRs (Supp Text S11). 
Comparison with other DNA methylation prediction tools: Different 
methylation prediction algorithms work at differing genomic resolutions, 
on different datasets, using different predictor variables, to predict 
different response variables; making it challenging to set up unbiased 
comparisons between models. However, based on reported 
performances, DIRECTION is comparable to state-of-the-art high 
resolution methylation prediction algorithms (Whole-genome accuracy: 
DIRECTION: 0.96 versus (Zhang,W., et al. 2015): 0.91, Supp Table T1). 
Also, under the constraint of the same predictor variable set, 
DIRECTION outperformed the well-established inbuilt MATLAB 
classification tree function (Fig 2D).  

 

Fig. 4: 5-hmC status prediction in NPC A) 5-hmC balanced set prediction evaluation for SVM (Supp Table T10) B) 5-hmC whole-genome prediction 
metrics C) OFS feature clustering. At each node, leaves (features) under it were removed from OFS to create new feature sets. For these, feature 
inclusion (starred) and resultant change in precision/recall w.r.t. OFS (by reclassifying dataset) characterize features’ contribution to classification 
quality D,E) Visualization of 5-hmC status prediction and discriminative input features in PCDH17 and MEIS2 
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OFS for DNA methylation prediction: The most discriminative 
features, contributing to high recall and precision, in DNA methylation 
predictions in NPC CGI regions were chromatin “states” inferred by the 
ChromHMM model (Ernst,J. and Kellis,M. 2012), and H2AK5ac histone 
modification (Fig 2B and Supp Table T7). The underlying biological 
interpretation of our findings is supported by published literature as 
H2AK5ac histone modification was shown to be enriched in regions of 
euchromatin and low methylation (Cuddapah,S., et al. 2009). Also, the 
OFS for predicting DNA methylation in NPC CGI regions has only 5 
features (Fig 2B), including transcription activation (H3K4me3, 
H2AK5ac) and repression (H3K9me3) associated histone marks, and 
DNase hypersensitivity (discriminative with respect to underlying DNA 
methylation (Lazarovici,A., et al. 2013). Contrasting CGI to non-CGI 
OFSs, we find several histone modification features (H3K27ac, 
H3K27me3, H3K36me3, and H3K4me1) in the non-CGI OFS, as 
opposed to H3K9me3 in the CGI OFS. The non-CGI OFS also contains 
the Repeat feature (repetitive elements), which is meaningful since 
repeat-containing retrotransposons in the human genome are silenced by 
methylation (Ooi,S.K., et al. 2009). The most prominent changes in 
predictive ability are depicted by significantly different recall (Fig 2A) 
and AUC (Supp Figs 2G, 2H; Supp Text S12).  
Transfer learning across cell types: Given that one of our goals is to 
perform whole-methylome reconstructions, we trained our classifier on 
H1 cells and tested its performance on NPC and vice versa. The results 
of the testing are only a few percentage points worse than the 
corresponding results in the same cell type (Supp Table T6), due to the 
fact that our approach relies on a minimal set of discriminative features 
(OFS) which are similar in H1 and NPC, and therefore has great promise 
for “transfer learning” scenarios like de novo reconstruction of the 
methylome. In order to test the limits of such transfer learning, we used 
the NPC-trained SVM to perform whole methylome predictions in the 
totipotent Mesenchymal Stem Cells (MSC) and in the terminally 
differentiated fetal fibroblast cell line IMR90. Since loss of pluripotency 
is associated with epigenome reprogramming involving DNA 
methylation, we find that the NPC-trained SVM performs well on the 
MSC dataset, but performs only modestly in IMR90 (Supp Table T6 and 
Supp Text S12). 
Using neighboring CpG sites as predictor variables: For improving 
imputation, the methylation status of the nearest neighboring CpG site 
within 500bp was used to create an input feature. Our feature 
engineering analyses (See Methods, Fig 3C) suggests that the predictive 

quality of the feature significantly decreases after 500bp (a distance 
corresponding to the average size of CGIs (Kang,M., et al. 2006), in 
agreement with findings that CGIs are typically consistently methylated 
or demethylated. We tested the ability of this feature to contribute to 
predictions in CGI and non-CGI SVM models by adding it to the beam 
search-identified OFS, followed by retraining the SVMs on balanced 
sets. It makes insignificant impact on the CGI SVM (where precision and 
recall are  > 0.95) but strikingly improves recall of the non-CGI SVM 
from 0.72 to 0.77 (Fig 2A), suggesting that even in non CpG-rich 
regions, spatial contiguity of methylation status is common.  
Consensus reference methylome based predictions: Based on the 44% 
of CpG sites that are methylation-invariant in our reference, we 
compared our SVM prediction model to the prediction based on the 
consensus reference methylome. Both predictors were highly accurate 
and comparable on the set of cytosines underlying the consensus 
reference methylome with zero mismatches, and on balanced subsets, the 
precision of the SVM was 0.87, compared to 0.99 of the most stringent 
consensus-based predictor (Fig 3A). We then incorporated the consensus 
reference methylome-based predictor into our ensemble-learning 
framework (Fig 2A), testing the framework with and without the 
consensus reference methylome on balanced sets. The prediction metrics 
had incremental improvement in CGI regions, and significant 
improvement in non-CGI regions, suggesting that an ensemble 
prediction scheme is optimal. On whole genome datasets, we see 
incremental improvement in NPC methylation status prediction accuracy 
(0.97) as opposed to solely SVM or RF (0.96) (Supp Table T6). 
5-hmC status prediction: We performed 5-hmC status prediction using 
features from the initial feature set for methylation status prediction 
model, using methylation level as an additional feature (Supp Table 
T10). In order to identify the most discriminative features for 5-hmC 
status prediction, we ran our beam search algorithm and obtained 
discriminative feature sets. Based on the experimental design previously 
outlined, the performance of the OFS was compared against other 
biologically and statistically meaningful feature sets (NPC: Fig 4A, F-
score 0.78; H1: Supp Fig 4B, F-score 0.7). The most distinguishing 
characteristic of assorted 5-hmC feature sets in both cell types was the 
profound presence of active enhancer histone modifications H3K4me1 
and H3K27ac (Shlyueva,D., et al. 2014), DNase and other genomic 
derived features including CpG content, and Alu repeats (Supp Table 
T11). Insightfully, a single addition to the OFS when our predictor was 
constrained to the enhancer regions was H3K27ac, suggesting biological 

 

Fig. 5: 5-hmC status prediction in enhancers A) Sequencing depth across cytosines in enhancers after downsampling B) Log-log linear regression fit 
(mapped read count vs sequencing depth across cytosines) in NPC enhancers C) Heatmap of predicted 5-hmC enrichment ratio and proximal gene 
expression for enhancers with highest predicted gain in 5-hmC enrichment ratio (NPC vs H1). GO term enrichment for genes with highest 5-hmC 
enrichment ratio (NPC vs H1) using predictions and TAB-seq data D) 5-hmC status prediction in NPC enhancers 
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interpretability of our results. The absence of H3K27ac from the 5-hmC 
OFS (when the predictor is not constrained to enhancer regions) can be 
explained by the presence of another enhancer chromatin mark 
(H3K4me1) in the OFS, and the relatively small size of enhancer regions 
compared to the non-enhancer portion of the genome. Unsurprisingly, 
we find the H3K4me1 enhancer mark being one of the most promising 
predictive features due to its presence in both the high recall and optimal 
feature sets. Significant depletion of 5-hmC in H3K9me3 rich 
heterochromatin regions, and its positive correlation with H3K4me3 
active histone modification (Yamaguchi,S., et al. 2013), clearly 
designates these chromatin marks as suitable candidates for the OFS. In 
order to show that the obtained OFS is discriminative towards 5-hmC 
signal, we predicted 5-hmC status across various TAB-seq level 
thresholds and noticed that the prediction metric grows slowly with the 
increase in threshold value (Supp Fig 4G), and shows consistent AUC 
for a range of thresholds (Supp Figs 4D, 4E). We performed whole-
genome 5-hmC predictions in NPC and H1 and obtained 0.82 and 0.75 
accuracy respectively (NPC: Fig 4B; H1: Supp Fig 4C). These results 
together suggest that 5-hmC status can be fairly accurately reconstructed 
in our datasets. Lower prediction accuracy in H1 can putatively be 
attributed to a lower coverage depth in the training data. Finally, we 
performed 5-hmC predictions restricted to cytosines with high BS-seq 
CCRs, yielding comparable results to our previous analyses, implying 
that the numerous public BS-seq datasets together with additional input 
features can be used to predict 5-hmC maps (Supp Text S13). 
5-hmC transfer learning across H1 and NPC: In analogous fashion to 
our methylation data, we trained our classifier on H1 cells and tested its 
performance on NPC and vice versa. The results of the testing suggest 
that transfer learning across H1 and NPC is feasible (Supp Table T10). 
OFS feature contributions: We constructed a dendrogram (Fig 4C) for 
the 5-hmC status prediction OFS, and eliminated subsets of features as 
described in Supp Text S8. The most notable changes to recall were 
observed upon elimination of the BS-seq CCR feature, while precision 
was affected by H3K4me1 and GC saturation removal, signifying the 
importance of these features to the prediction rate. Only four features 
(BS-seq CCR, GC saturation, DNase, and Alu) are sufficient to capture 
the majority of TAB-seq signal by garnering 0.75 F-score in NPC (Fig 
4C). Several of these were identified in the literature to be enriched in 
regions of high hydroxymethylation (Yu,M., et al. 2012). We show our 
5-hmC prediction at work in two genomic regions proximal to PCDH17 
and MEIS2 genes (Figs 4D, 4E), previously implicated in synapse 
formation and interneuron development (Batista-Brito,R., et al. 2009, 
Hoshina,N., et al. 2013). 
Overall prediction in enhancer regions: 5-hmC is differentially 
enriched in functionally important enhancers (Stroud,H., et al. 2011). 
Thus, we trained and tested our model by restricting it only to NPC 
enhancers (identification of enhancers in Supp Text S14), obtaining 0.77 
precision, 0.82 recall (Fig 5D) and a high AUC (Supp Fig 4F). The 
active enhancer mark H3K27ac was present in the OFS (Supp Table 
T11A) suggesting a correlation of 5-hmC with enhancer activation. A 
significant improvement in the maximum precision feature set (HP) was 
found in models constrained to enhancers (Supp Fig 4A), due to 5-hmC 
overabundance in enhancers.  
5-hmC prediction in small TAB-seq datasets: BS-seq and TAB-seq 
datasets require high sequencing depth to reliably determine CpG 

methylation and 5-hmC status across the genome, but as coverage 
decreases in smaller datasets, the ability to do so is diminished. The 
feasibility of training a model (like SVM) does not decrease 
proportionally to dataset size, as we can train SVMs with as few as 2000-
2500 training examples (Supp Fig 2A, Supp Table T12). We 
downsampled one of our NPC datasets to 12% (commensurate with 
RRBS-seq dataset sizes (Gu,H., et al. 2011)) of the original number of 
reads, and predicted the corresponding sequencing depth in enhancer 
CpG cytosines (Figs 5A, 5B). We find sufficient training examples 
(>2000) at resolutions of both whole enhancers and individual cytosines 
with sequencing depths suited for reliable CCR estimation in training 
SVMs, suggesting feasibility of robustly training 5-hmC status 
prediction models in enhancers for reduced representation TAB-seq data 
(Supp Text S15).  
In silico framework for high throughput hypothesis-testing: 
Hypothesis testing using TAB-seq data to identify 5-hmC rich regions or 
differential 5-hmC enrichment across conditions, naturally leads to a 
feasibility study of performing such tests on in silico predictions. 5-hmC 
is an intermediate in the demethylation pathway and low DNA 
methylation levels are the hallmark of active enhancers (Yu,M., et al. 
2012). Thus, we hypothesized that increase in an enhancer’s 5-hmC 
enrichment (quantified as 5-hmC enrichment ratio, Supp Text S16) from 
H1 to NPC differentiation corresponded to changes in proximal gene 
expression, putatively indicative of functional differences between H1 
and NPC. We identified enhancers with the largest changes in 5-hmC 
enrichment ratio using both experimental TAB-seq data and our 5-hmC 
predictions. Gene set enrichment analysis (Supp Text S17) on proximal 
genes to the identified enhancers reveal similar results for the two gene 
sets, enriched in neurodevelopmental processes. We find differential 
expression between H1 and NPC in the prediction-based gene set, 
suggesting our prediction-based functional study yields biologically 
relevant findings (Fig 5C, Supp Data 1, Supp Data 2, Supp Data 3).  

4 Discussion 
Our work opens up new directions in DNA methylation studies. 
Discriminative feature sets for predicting 5-hmC status include features 
engineered to leverage idiosyncrasies of hydroxymethylation, like strand 
asymmetry, G-rich sequence bias, and enrichment in open chromatin and 
gene bodies. Such correlative descriptions of 5-hmC modification with 
respect to genomic and epigenomic features can help create fine-grained 
“epigenome states” by integrating 5-mC and 5-hmC modifications with 
histone mark based chromatin states (Ernst,J. and Kellis,M. 2012) in the 
future. For purposes of predicting BS-seq signal, we identified CpG sites 
that are methylation-invariant across reference human methylomes we 
analyzed, helping improve balanced set and whole-genome methylation 
status prediction (Supp Text S18 for strengths and limits of our 
framework). In the future, we aim to identify and characterize the 
correlational structure of reference methylomes across developmental 
linages and tissue types. Such studies can potentially yield insight into 
regulatory mechanisms, and identify aberrant methylation patterns in 
disease or perturbation models. DIRECTION is the first in-silico, whole-
epigenome predictor of DNA methylation and 5-hmC status at single 
nucleotide resolution, with results comparable to state-of-the-art DNA 
methylation prediction tools. Our tool allows us to identify candidate 
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genomic regions for differential hydroxymethylation as a first step in 
functional studies. Unlike previous feature-intensive approaches for 
predicting DNA methylation, our algorithm uses a sophisticated feature 
selection technique adopted from artificial intelligence and identifies a 
small subset of nonredundant, discriminative, predictive features. This 
allows for greater biological interpretability of generated results, superior 
performance in resource-scarce scenarios, making the model sparse 
without explicit regularization. DIRECTION is an open-source, agile, 
scalable ensemble predictor using biologically and practically motivated 
genome partitioning and training a predictive model per partition, 
allowing us to deconvolute inevitably mixed biological signals in whole-
epigenome studies. In the future, we aim to extend DIRECTION by 
predicting DNA methylation and 5-hmC status in additional genomic 
contexts (like non-CpG cytosines), other methylation paradigms (like 
epigenetic reprogramming in gametes), and in non-mammalian species 
where methylation plays distinct functional roles.  
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